skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malerba, Martino"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. A combination of searches for singly and doubly charged Higgs bosons, š»Ā± and š»Ā±Ā±, produced via vector-boson fusion is performed using 140 fbāˆ’1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production cross section times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available December 1, 2025
  5. Abstract The ATLAS tile calorimeter (TileCal) is the hadronic sampling calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider (LHC). This paper gives an overview of the calorimeter’s operation and performance during the years 2015–2018 (Run 2). In this period, ATLAS collected proton–proton collision data at a centre-of-mass energy of 13 TeV and the TileCal was 99.65% efficient for data-taking. The signal reconstruction, the calibration procedures, and the detector operational status are presented. The performance of two ATLAS trigger systems making use of TileCal information, the minimum-bias trigger scintillators and the tile muon trigger, is discussed. Studies of radiation effects allow the degradation of the output signals at the end of the LHC and HL-LHC operations to be estimated. Finally, the TileCal response to isolated muons, hadrons and jets from proton–proton collisions is presented. The energy and time calibration methods performed excellently, resulting in good stability and uniformity of the calorimeter response during Run 2. The setting of the energy scale was performed with an uncertainty of 2%. The results demonstrate that the performance is in accordance with specifications defined in the Technical Design Report. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Abstract This paper reports a summary of searches for a fermionic dark matter candidate in the context of theoretical models characterised by a mediator particle exchange in thes-channel. The data sample considered consists ofppcollisions delivered by the Large Hadron Collider during its Run 2 at a centre-of-mass energy of$$\sqrt{s} = 13\,\textrm{TeV}$$ s = 13 TeV and recorded by the ATLAS detector, corresponding to up to 140 fb$$^{-1}$$ - 1 . The interpretations of the results are based on simplified models where the new mediator particles can be spin-0, with scalar or pseudo-scalar couplings to fermions, or spin-1, with vector or axial-vector couplings to fermions. Exclusion limits are obtained from various searches characterised by final states with resonant production of Standard Model particles, or production of Standard Model particles in association with large missing transverse momentum. 
    more » « less
  7. Abstract A search for leptoquark pair production decaying into$$te^- \bar{t}e^+$$ t e - t ĀÆ e + or$$t\mu ^- \bar{t}\mu ^+$$ t μ - t ĀÆ μ + in final states with multiple leptons is presented. The search is based on a dataset ofppcollisions at$$\sqrt{s}=13~\text {TeV} $$ s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$$^{-1}$$ - 1 . Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from ab-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into$$te^{-}$$ t e - ($$t\mu ^{-}$$ t μ - ), the corresponding lower limit on the scalar mixed-generation leptoquark mass$$m_{\textrm{LQ}_{\textrm{mix}}^{\textrm{d}}}$$ m LQ mix d is at 1.58 (1.59) TeV and on the vector leptoquark mass$$m_{{\tilde{U}}_1}$$ m U ~ 1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario. 
    more » « less
  8. Abstract The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025). 
    more » « less
  9. Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of  ā„’ = 2 Ɨ 1034cm-2s-1was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of  ā„’ = 2 Ɨ 1034cm-2s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector. 
    more » « less